① 事先准備5頂帽子,其中3頂白帽子,2頂黑帽子,讓3個同學看後閉眼
分析與解答:
(1)退一步思考,從原來的問題里減少一個人和一頂帽子。先不考慮三個人兩頂黑帽子,而只考慮兩個人一頂黑帽子。這一簡化,思考起來就容易多了,只有一頂黑帽子,如果我戴的是黑帽子,對方便立刻會說,他戴的是白帽子,現在對方沒有立刻回答,而在躊躇,可見我戴的不是黑帽子而是白帽子。
(2)進一步推想到三個人兩頂黑帽子。如果我頭上戴的是黑帽子,就變成前面已討論的「兩個人一頂黑帽子」的問題了。這時他倆可立刻回答而不會躊躇,說明我頭上戴的不是黑帽子,而是白帽子。
② 有3頂黑帽子,2頂白帽子。讓三個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴
如果前面戴的都是白帽子,則最後一人就知道自己戴的是黑帽子。若最後一人回答不知道,則前面兩人戴的都是黑帽子或一人白帽子一人黑帽子;此時,若最前面的人戴的是白帽子,則中間的人就知道自己戴的是黑帽子;若中間的人回答不知道,則最前面的人戴的是黑帽子。
分析與綜合
分析:分析是把事物分解為各個部分、側面、屬性,分別加以研究。是認識事物整體的必要階段。
綜合:綜合是把事物各個部分、側面、屬性按內在聯系有機地統一為整體,以掌握事物的本質和規律。
分析與綜合是互相滲透和轉化的,在分析基礎上綜合,在綜合指導下分析。分析與綜合,循環往復,推動認識的深化和發展。
事例:在光的研究中,人們分析了光的直線傳播、反射、折射,認為光是微粒,人們又分析研究光的干涉、衍射現象和其他一些微粒說不能解釋的現象,認為光是波。當人們測出了各種光的波長,提出了光的電磁理論,似乎光就是一種波,一種電磁波。
但是,光電效應的發現又是波動說無法解釋的,又提出了光子說。當人們把這些方面綜合起來以後,一個新的認識產生了:光具有波粒二象性。
③ 3個紅帽子2個黑帽子1個白帽子,甲乙丙丁以從後到前的順序排列,問甲乙丙,他們都說看
提問不完整吧
④ 三頂黑帽子,兩頂白帽的推理問題
A=白,B=黑,C=黑。
理由:
1.可以確定三人頭上不可能有兩頂白帽子.否則不是另一人看見有兩頂白帽子,就可以確定自己不是白帽子,而是黑帽子了;
下面在不能有兩頂白帽子的前提下進行推導:
2.C不可能是白帽子.假如C為白帽子,因為C的顏色是A和B都可以看到的,B聽到A說自己無法判斷自己帽子顏色後,B就可以判斷出自己不是白色了,而是黑色了,這與題意不符。所以C是黑帽子;
下面在C是黑帽子且沒有兩頂白帽子的前提下推導:
3.C是黑帽子的情況下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三種情況,這三種情況中,B黑的時候A有兩種情況,B白的時候A只有一種情況,即A黑B白c黑。這樣A看到的是一黑一白,無法判斷自己帽子的顏色,B看到兩頂黑色,也無法判斷自己帽子的顏色。C看到的是一黑一白,C想:「如果自己是白色的,A就能看到兩頂白色的(B和C帽子的顏色),A就可以判斷自己是黑色的了。現在A無法判斷,所以自己一定是黑色。」也就是C在聽到A的話之後就能判斷自己帽子顏色了,而不要等到B說話。這與題中所述不符,所以B也不可能是白的,即B是黑的。
下面在B黑C黑的情況下討論:
4.剩下兩種情況,A白B黑C黑或A黑B黑C黑。從C的角度考慮,C想:「B看到A是黑色的,不管自己是黑是白B都無法判斷他自己帽子顏色,所以我也不能從B的話中判斷出自己帽子顏色。同時我看到兩頂黑色,也無法判斷自己帽子顏色,所以我總是判斷不出自己帽子的顏色。」這與題中情況不符,所以不可能都是黑色,所以只剩一種情況:A白B黑C黑。
從上可以判斷出唯一的可能是A白B黑C黑。
5.下面再來驗證一下是不是符合題意,即論證是否是得出題中事實的充分條件:
在A白B黑C黑的情況下,A看到的是兩頂黑色,所以無法判斷自己帽子的顏色;B看到一黑一白,也無法判斷自己帽子的顏色。C看到一白一黑,本來也無法判斷自己帽子顏色。但是聽了B的話後,C想:「假如自己是白色,B再看到A的白色,那麼B看到兩頂白色,那B就可以判斷自己肯定是黑色了。現在B不能判斷,那麼自己一定是白色。」這樣C就判斷出自己帽子的顏色了,與題中所述相符.
所以此題的答案是:A=白,B=黑,C=黑。
推理完畢!
⑤ 推理題:有1位老師,准備3頂白帽子,2頂黑帽子,讓3個學生看到,然後叫他們閉上眼睛,分別給他們戴上
甲可以。丙推斷不出自己帽子的顏色則甲乙兩人的帽子可能是2白或1白1黑,乙也推斷不出自己帽子的顏色則甲的帽子顏色只能為白色,故甲可以推斷出自己帽子的顏色
⑥ 有四個人在做游戲,一個人手上拿個3個白帽子,2個黑帽子,另外3個人站成三角型。給3個人一人帶個白帽
如果那個拿帽子手裡拿的是兩個白帽子,戴帽子的兩個人戴黑帽子自己頭上肯定是白帽子,如果拿帽子手上是兩個黑帽子,自己頭像肯定是白帽子,如果那個人手裡拿一個白一個黑,而且對面兩個人戴帽子也是一個白一個黑,那自己肯定是白帽子,如果拿帽子的手裡依然是一個白一個黑,對面的人頭上是兩個白,自己頭上肯定是黑色帽子。
⑦ 經典邏輯題:黑白帽子
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
⑧ 華羅庚退步解題方法 ,就是三個學生戴帽子,三頂白帽子,兩頂黑帽子
排除法:
這道題的條件有兩個
1,猶豫前一會兒
2,猶豫後一會兒
答案只有三個可能
1三白,
2一白兩黑
3兩白一黑
通過猶豫前一會兒排除2,因為肯定有個白的先說,不會猶豫
通過猶豫後一會兒排除3,如果有個黑的,那麼兩個白的就會根據不會有兩個黑的說出自己是白的,
總而言之,對於神童來說猶豫這么久意味著無法確定,神童之間明白大家都無法確定,而三白就是唯一無法確定的情況.也就是唯一的情況.
⑨ 白帽子和黑帽子!
第一個是白帽子,地二個是黑帽子,第三個是白帽子
⑩ 來自微軟的試題 有3頂黑帽子,2頂白帽子。
最後一個人不知道,說明前面兩個人一定有個人是黑帽子(如果兩白,自己一定是黑的),
對於第二個人來說,既然最後一個人不知道,那麼他與前面一個人有三種情況(黑白,黑黑,白黑),如果前面一個人是白的,那麼自己就是黑的,也就知道了,而他不知道,所以第一個人一定是黑的,望採納