㈠ 二十世纪十大科技发明是什么
1、飞机
二十世纪最重大的发明之一,是飞机的诞生。
美国的莱特兄弟在世界的飞机发展史上做出了重大的贡献。莱特兄弟进行1000多次滑翔试飞,终于在1903年制造出了第一架依靠自身动力进行载人飞行的飞机“飞行者”1号,并且获得试飞成功。他们因此于1909年获得美国国会荣誉奖。同年,他们创办了“莱特飞机公司”。这是人类在飞机发展的历史上取得的巨大成功。
2、青霉素
青霉素是抗菌素的一种,是从青霉菌培养液中提制的药物,是第一种能够治疗人类疾病的抗生素。
青霉素的发现者是英国细菌学家弗莱明。1928年的一天,弗莱明在他的实验室里研究导致人体发热的葡萄球菌。由于盖子没有盖好,他发觉培养细菌用的琼脂上附了一层青霉菌。使弗莱明感到惊讶的是,在青霉菌的近旁,葡萄球菌忽然不见了。
这个偶然的发现深深吸引了他,他设法培养这种霉菌进行多次试验,证明青霉素可以在几小时内将葡萄球菌全部杀死。弗莱明据此发明了葡萄球菌的克星—青霉素。
3、电视
电视的诞生,是20世纪人类最伟大的发明之一。在现代社会里,没有电视的生活已不可想象了。各种型号、各种功能的黑白和彩色电视从一条条流水线上源源不断地流入世界各地的工厂、学校、医院和家庭,正在奇迹般地迅速改变着人们的生活。形形色色的电视,把人们带进了一个五光十色的奇妙世界。
4、原子弹
1945年8月,毁灭地球的播朵拉盒子在日本广岛与长崎被打开,当时国际强权一心只想以这种威力极大的致命破坏武器去压倒对方。美国首先在1945年7月于新墨西哥州试爆成功,苏联紧接着在1949年成功试爆,英国是1952年,法国是1960年,中国是1964年。
5、电子计算机
计算机于1946年问世,计算机掀起的第三次革命,彻底改变人们工作与思考的形态。70年代末电脑厂商开始开发较小型的个人电脑,到了80年代初市场上有了大众化的电脑消费产品。个人电脑加快社会数字化脚步,几乎社会的每一个层面都被电脑完全感染.没有人能够拒绝电脑进人生活之中。
6、人造卫星
1957年10月4日,苏联为了纪念十月革命胜利40周年,发射了人类历史上第一颗人造地球卫星,标志着航天时代的开始。1961年4月2日,苏联宇航员加加林乘飞船进入太空,成为第一个进入太空的人。1969年7月20日,美国两名宇航员乘宇宙飞船登上月球。
卫星可以传输电视、广播节目信号,还可以为航空、海航、天气预报、科技信息等提供服务,从而把地球大大地“缩小”了。
7、避孕药:
1954年,美国医师格雷戈里·平卡斯发明了避孕药,它是由两种抑制女性排卵的激素组成的混合物。
避孕药之所以被列为二十世纪最伟大的科学成就之一,原因就在于它把妇女从被动的生育中解放出来从此妇女们可以自主地控制生育,按照自己的意愿决定是否要小孩,根据自己的情况决定何时怀孕。
8、激光技术
1960年,梅曼研制成功世界上第一台可实际应用的红宝石激光器。它标志着激光技术的诞生。
近年来,激光技术发展的速度十分惊人,应用的范围不断拓展,如激光保鲜、激光育种、激光医疗、激光美容等等,已成为科技人员研究的热门领域。
9、塑料
开始于1909年美国人L·贝克兰发明的酚醛塑料的制作方法。
几百年来,从小刀的把手到台球,一切都以象牙为标准原料。一直到1907年,利奥·贝克兰,一位曾因发明了用于拍摄快速运动照片的相纸而获丰厚利润的比利时籍发明家,无意中发明了苯酚和甲醛的化合物。
这种首创的纯合成塑料--酚醛塑料,具有防热、防电和防腐蚀的功能。它不仅使台球游戏获益,塑料的一大好处在于其用途的多面性,从电话机到马桶,从烟灰缸到飞机零件,一切东西都用得上塑料。
10、尼龙
1928年,美国有机化学家卡罗瑟斯应聘在美国杜邦公司设于威尔明顿的实验室中进行有机化学研究。1935年以己二酸与己二胺为原料制得聚合物,由于这两个组分中均含有6个碳原子,当时称为聚合物66。他又将这一聚合物熔融后经注射针压出,在张力下拉伸称为纤维。
这种纤维即聚酰胺66纤维,1939年实现工业化后定名为耐纶(Nylon),是最早实现工业化的合成纤维品种。
尼龙的合成奠定了合成纤维工业的基础,尼龙的出现使纺织品的面貌焕然一新。用这种纤维织成的尼龙丝袜既透明又比丝袜耐穿,从第二次世界大战爆发直到1945年,尼龙工业被转向制降落伞、飞机轮胎帘子布、军服等军工产品。
㈡ 层析的常用层析
◆吸附层析
吸附剂的吸附力强弱,是由能否有效地接受或供给电子,或提供和接受活泼氢来决定。被吸附物的化学结构如与吸附剂有相似的电子特性,吸附就更牢固。常用吸附剂的吸附力的强弱顺序为:活性炭、氧化铝、硅胶、氧化镁、碳酸钙、磷酸钙、石膏、纤维素、淀粉和糖等。以活性炭的吸附力最强。吸附剂在使用前须先用加热脱水等方法活化。大多数吸附剂遇水即钝化,因此吸附层析大多用于能溶于有机溶剂的有机化合物的分离,较少用于无机化合物。洗脱溶剂的解析能力的强弱顺序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。为了能得到较好的分离效果,常用两种或数种不同强度的溶剂按一定比例混合,得到合适洗脱能力的溶剂系统,以获得最佳分离效果。
◆分配层析
在支持物上形成部分互溶的两相系统。一般是水相和有机溶剂相。常用支持物是硅胶、纤维素和淀粉等,这些亲水物质能储留相当量的水。被分离物质在两相中都能溶解,但分配比率不同,展层时就会形成以不同速度向前移动的区带。
◆离子交换层析
支持物是人工交联的带有能解离基团的有机高分子,如离子交换树脂、离子交换纤维素、离子交换凝胶等。带阳离子基团的,如磺酸基(—SO3H)、羧甲基(—CH2COOH)和磷酸基等为阳离子交换剂。带阴离子基团的,如DEAE—(二乙基胺乙基)和QAE—(四级胺乙基)等为阴离子交换剂。离子交换层析只适用于能在水中解离的化合物,包括有机物和无机物。对于蛋白质、核酸、氨基酸及核苷酸的分离分析有极好的分辨力。离子交换基团在水溶液中解离后,能吸引水中被分离物的离子,各种物质在离子交换剂上的离子浓度与周围溶液的离子浓度保持平衡状态,各种离子有不同的交换常数,K值愈高,被吸附愈牢。洗脱时,增加溶液的离子强度,如改变pH,增加盐浓度,离子被取代而解吸下来。洗脱过程中,按K值不同,分成不同的区带。
◆凝胶过滤层析
支持物是人工合成的交联高聚物,在水中膨胀后成为凝胶。凝胶内为内水层,凝胶周围的水为外水层。控制交联度以形成不同孔径的网状结构。交联度小的孔径大,交联度大的孔径小。凝胶只允许被分离物质中小于孔径的分子进入,大于孔径的分子被排斥在外水层,最先被洗脱下来。而进入孔径的分子也按分子量大小大致分离成不同的区带。选择不同规格的凝胶,可把一个混合物按分子量的差异分成不同的组分。这种方法曾被称为分子筛。目前常用的凝胶商品有:葡聚糖凝胶(sephadex)、聚丙烯酰胺凝胶(bio-gel)、琼脂糖凝胶(sepharose)和聚苯乙烯凝胶(styragel)等。
◆亲和层析
在一对有专一的相互作用的物质中,把其中之一联结在支持物上,用于纯化相对的另一物质。常见的亲和对如:酶和抑制剂,抗原和抗体,激素和受体等。支持物为琼脂糖或纤维素等。
◆气相层析
属于分配层析或吸附层析,仅适用于分析分离挥发性和低挥发性物质。固定相是在惰性支持物(如磨细的耐火砖)上覆盖一层高沸点液体,如硅油、高沸点石蜡和油脂、环氧类聚合物。外涂层约为支持物重量的20%。分析时操作温度范围,一般从室温到200℃。特殊的层析柱能达到500℃。流动相常用氦、氩或氮为展层气体。气相层析分离的区带十分清晰,是由于挥发性物质在两相间能很快达到平衡,所需分析时间大为缩短,一般为数分钟至10余分钟。检测记录系统绘出的各峰是测定流出气体电阻变化的结果,因而测定样品量可到微克和毫微克水平。具有快速、灵敏和微量的优点。气相层析也能用于分离制备样品,但需增加将流出气体通过冷冻将分离物回收的装置。
◆纸层析
以滤纸为支持物的分配层析。组成滤纸的纤维素是亲水物质,能形成水相和展层溶剂的两相系统,被分离物质在两相中的分配保持平衡关系。纸层析用于分析简单的混合物时可做单向层析。对于复杂的混合物,可做双向层析。1944年A.J.P.马丁第一次用纸层析分析氨基酸,得到很好的分离效果,开创了近代层析的发展和应用的新局面。70年代以后,纸层析已逐渐为其他分辨力更高、速度更快和更微量化的新方法,如离子交换层析、薄层层析、高效液相层析等所代替。
◆薄层层析
在玻璃片、金属箔或塑料片上铺上一层约1~2毫米的支持物,如纤维素、硅胶、离子交换剂、氧化铝或聚酰胺等,根据需要做不同类型的层析。聚酰胺薄膜是一种特异的薄层,将尼龙溶解于浓甲酸中,涂在涤纶片基上,当甲酸挥发后,在涤纶片基上形成一层多孔的薄膜,其分辨力超过了用尼龙粉铺成的薄层。薄层层析较纸层析优越在于分辨高,展层时间短。例如用纸层析做氨基酸分析,往往需要两天时间,而且对层析条件要求严格,不易得到满意的分离效果。如用薄层层析做,一般约需半小时,分离效果更好。薄层层析一般用于定性分析。也能用于定量分析和制备样品。
◆高效液相层析(又名高压液相色谱)
70年代新发展的层析法。其特点是:用高压输液泵,压强最高可达5000psi(相当于34个标准大气压)。用直径约3~10微米的超细支持物装填均匀的不锈钢柱。常用的支持物是在玻璃小珠上涂一层1~2微米的二氧化硅,经硫酰氯反应生成Si—Cl,进一步连接疏水的烷基,如Si—C18H37,或阳离子交换基团—Si(CH2)n—C6H4SO3H,或阴离子交换基团—Si(CH2)nNH2。这种支持物能承受很高的压力,化学性能稳定。用不同类型支持物的HPLC,可做吸附层析、离子交换层析和凝胶过滤层析。其分析微量化可达10-10克水平。但用于制备,可以纯化上克的样品。展层时间短,一般需几分钟到10余分钟。其分析速度、精确度可与气相层析媲美。HPLC适于分析分离不挥发和极性物质。而气相层析只适用于挥发性物质,两者互为补充,都是目前最为理想的层析法。HPLC配有程序控制洗脱溶剂的梯度混合仪,数据处理的积分仪和记录仪等电子系统,成为一种先进的分析仪器,在生物化学、化学、医药学和环境科学的研究中发挥了重要作用。
◆反相层析
在吸附层析中,高极性物质在层析柱上吸附较牢,洗脱时发生拖尾现象和保留时间长的问题。如果在支持物上涂上一层高碳原子的疏水性强的烷烃类,洗脱液用极性强的溶剂,如甲醇和水的混合物。则被分离样品中的极性强的物质不被吸附,最先洗下来,得到较好的分离效果。这种层析法与普通的吸附层析法相反,故称为反相层析。目前用HPLC做反相层析常用的ODS柱,即在支持物的表面上连接了C18H37Si—基团。
◆同系层析
在核酸分析中,将样品经核酸酶部分裂解成不同长度的核苷酸片段,用同位素标记后,在DEAE纤维素薄层上分离,用含有未标记的相同的核苷酸片段作展层溶剂,这样,未标记的核苷酸把标记过的核苷酸推进,使按分子量大小不同把标记核苷酸片段,按由小到大的次序排列,达到分离的目的。于是把这种层析法称为同系层析。同系层析和电泳相结合曾用于寡核苷酸的顺序分析。
纸层析是层析法的一种,要了解纸层法还得从层析法开始.层析法又称色层分析法或色谱法(Chromatography),是一种基于被分离物质的物理、化学及生物学特性的不同,使它们在某种基质中移动速度不同而进行分离和分析的方法。例如:我们利用物质在溶解度、吸附能力、立体化学特性及分子的大小、带电情况及离子交换、亲和力的大小及特异的生物学反应等方面的差异,使其在流动相与固定相之间的分配系数(或称分配常数)不同,达到彼此分离的目的。
层析法的最大特点是分离效率高,它能分离各种性质极相类似的物质。而且它既可以用于少量物质的分析鉴定,又可用于大量物质的分离纯化制备。因此,作为一种重要的分析分离手段与方法,它广泛地应用于科学研究与工业生产上。现在,它在石油、化工、医药卫生、生物科学、环境科学、农业科学等领域都发挥着十分重要的作用。
层析根据固定相基质的形式分类,层析可以分为纸层析、薄层层析和柱层析。其中纸层析是指以滤纸作为基质的层析。
㈢ 做豆腐点浆事加聚丙稀酰胺可以吗
不可以,聚丙稀酰胺是污水处理剂,不能用于豆制品,豆腐点浆是需要添加食品添加剂的。
㈣ 抗菌剂的测试
ISO标准 (14项)
ISO 17299-1-2013 纺织品 除臭性的测定 第1部分:总则
ISO 17299-2-2013 纺织品 除臭性的测定 第2部分:检知管法
ISO 17299-3-2013 纺织品 除臭性的测定 第3部分:气相色谱法
ISO 18184-2014 纺织品--纺织产品的抗病毒活性的测定
ISO 13629-2-2014 纺织品抗真菌性能测试标准第2部分 平板法
ISO 13629-1-2012 纺织品的抗真菌活性测定.第1部分 荧光法
ISO 20743:2013 纺织品--纺织产品的抗菌活性测定
ISO 20645-2004 纺织织品--抗菌活性度的测定 琼脂扩散盘试验
ISO 11721-2:2003 纺织品.纤维素纺织品抗菌性的测定.土埋试验.第2部分:防腐处理长期有效性的鉴定
ISO 11721-1:2001 纺织品 纤维素纺织品抗菌性的测定 土埋试验 第1部分:防腐处理的评定
ISO 846-1997 塑料 微生物作用的评价
ISO 22196-2011 塑料与其他无孔表面的抗菌性测定
ISO 16187-2013 鞋类和鞋类部件抗细菌性能评估试验方法
ISO 27447-2009 精细陶瓷(高级陶瓷、高级工业陶瓷)半导体光催化材料抗菌活性的试验方法
日本标准 (7项)
JIS R1706-2013 精细陶瓷(高级陶瓷、高技术陶瓷) 光催化材料抗菌性能的测定--使用细菌噬菌体Qβ的试验方法
JIS R1756-2013 精细陶瓷(高级陶瓷、高技术陶瓷)室内光环境下光催化材料抗菌活性的试验方法--使用细菌噬菌体Qβ的试验方法
JIS R1702-2012 精细陶瓷(高级陶瓷、高技术陶瓷) 光催化材料抗菌活性和功效的试验方法
JIS Z 2911-2010 耐霉菌活性测定方法
JIS Z 2801-2000 抗菌塑料抗菌性能试验方法及抗菌效果
JIS T9107-2005 单用途抗菌外科橡胶手头
JIS L 1902-2002 纺织制品抗菌活性和效率的测试
美国标准 (ASTM标准3项,AATCC标准6项)
AATCC 100-2012 纺织材料抗菌整理剂的评定
AATCC 90-2011 纺织品抗菌性能测定 琼脂平板法
AATCC 147-2004 织物材料抗菌活性测定:平行条纹法
AATCC 30-2004 纺织材料抗真菌性的评定:纺织材料的防霉防腐性
AATCC 194-2006 纺织品在长期测试条件抗室内尘螨性能的测定
AATCC 174-1998 地毯的抗菌性能评价
ASTM E2149-2013a 在动态接触条件下测定稳态抗菌剂的抗菌行为
ASTM D4576-2008 蓝色原料(皮革)抗霉菌生长的试验方法
ASTM G21-96-2002 合成聚合材料防霉(耐真菌)性能测试标准
NSF P172-2006 家用和商用洗衣机除菌性能
其他国家/地区标准
EN 14119-2003 纺织品的试验细菌影响的评估
NF G39-014-2005 纺织织物.抗菌活性的测定.琼脂扩散木片试验
中国标准
国家强制标准 (9项)
GB 15981-1995 消毒与灭菌效果的评价方法与标准(附录B:消毒剂定性消毒试验; 附录C:消毒剂定量消毒试验)
GB 15979-2002 一次性使用卫生用品卫生标准(附录C4:溶出性抗(抑)菌产品;附录C5:非溶出性抗(抑)菌产品)
GB 19192-2003 隐形眼镜护理液卫生要求
GB 21551.1-2008 家用和类似用途电器的抗菌、除菌、净化功能通则
GB 21551.2-2010 家用和类似用途电器的抗菌、除菌、净化功能 抗菌材料的特殊要求
GB 21551.3-2010 家用和类似用途电器的抗菌、除菌、净化功能 空气净化器的特殊要求
GB 21551.4-2010 家用和类似用途电器的抗菌、除菌、净化功能 电冰箱的特殊要求
GB 21551.5-2010 家用和类似用途电器的抗菌、除菌、净化功能 洗衣机的特殊要求
GB 21551.6-2010 家用和类似用途电器的抗菌、除菌、净化功能 空调器的特殊要求
国家推荐标准 (19项)
GB/T 21510-2008 纳米无机材料抗菌性能检测方法
GB/T 23763-2009 光催化抗菌材料及制品 抗菌性能的评价
GB/T 30706-2014 可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价
GB/T 31402-2015 塑料 塑料表面抗菌性能试验方法
GB/T 24128-2009 塑料防霉性能试验方法
GB/T 24170.1-2009 表面抗菌不锈钢 第1部分:电化学法
GB/T 28116-2011 抗菌骨质瓷器
GB/T 31713-2015 抗菌纺织品安全性卫生要求
GB/T 24253-2009 纺织品 防螨性能的评价
GB/T 24346-2009 纺织品 防霉性能的评价
GB/T 20944.1-2007 纺织品 抗菌性能的评价 第1部分:琼脂平皿扩散法
GB/T 20944.2-2007 纺织品 抗菌性能的评价 第2部分:吸收法
GB/T 20944.3-2008 纺织品 抗菌性能的评价 第3部分:震荡法
GB/T 23164-2008 地毯抗微生物活性测定
GB/T 28023-2011 絮用纤维制品抗菌整理剂残留量的测定
GB/T 21866-2008 抗菌涂料(漆膜)抗菌性测定法和抗菌效果
GB/T 1741-2007 漆膜耐霉菌性测定法
GB/T 4768-2008 防霉包装
GB/T 4857.21-1995 包装 运输包装件 防霉试验方法
行业标准 (48项)
HG/T 3794-2005 无机抗菌剂-性能及评价
HG/T 3950-2007 抗菌涂料
HG/T 4317-2012 含银抗菌溶液
HG/T 4301-2012 橡胶防霉性能测试方法
HG/T 3663-2014 胶鞋抗菌性能的试验方法
SN/T 2162-2008 壳聚糖抗菌棉纺织品检验规程
SN/T 2399-2010 抗菌金属材料评价方法
SN/T 2936-2011 进出口水性涂料中酚类防霉剂的测定 高效液相色离谱法
SN/T 3124-2012 橡胶及橡胶制品中酚类防霉剂的测定 高效液相色谱法
SN/T 3122-2012 无机抗菌材料抗菌性能试验方法
SN/T 2558.4-2012 进出口功能性纺织品检验方法 第4部分:抗菌性能 平板琼脂法
SN/T3655-2013 食品接触材料 纸、再生纤维材料 异噻唑啉酮类抗菌剂的测定 液相色谱-质谱/质谱法
SN/T 2558.9-2015 进出口功能性纺织品检验方法 第9部分:抗菌性能 阻抗法
SN/T 4307-2015 光催化抗菌材料安全性评价方法
SN/T 4488-2016 进出口纺织品 异噻唑啉酮类抗菌剂的测定 高效液相色谱法
SN/T 4448-2016 皮革材料中异噻唑啉酮防霉剂的含量测定
QB/T 2850-2007 抗菌抑菌型洗涤剂
QB/T 4199-2011 皮革 防霉性能测试方法
QB/T 2738-2012 日化产品抗菌抑菌效果的评价方法
QB/T 4341-2012 抗菌聚氨酯合成革 抗菌性能试验方法和抗菌效果
QB/T4371-2012 家具抗菌性能的评价
QB/T 2881-2013 鞋类和鞋类部件 抗菌性能技术条件
QB/T 4715-2014 合成革用抗菌剂
QB/T 5132-2017 家用和类似用途干衣机的抗菌、除菌功能技术要求及试验方法
QB/T 5133-2017 家用和类似用途洗碗机的抗菌、除菌功能技术要求及试验方法
JC/T 885-2001 建筑用防霉密封胶
JC/T 939-2004 建筑用抗菌塑料管抗细菌性能
JC/T 1054-2007 镀膜抗菌玻璃
JC/T 2039-2010 抗菌防霉木质装饰板
JC/T 897-2014 抗菌陶瓷制品抗菌性能
YB/T 4171-2008 含铜抗菌不锈钢
FZ/T73023-2006 抗菌针织品
FZ/T 01100-2008 纺织品 防螨性能的评定
FZ/T 60030-2009 家用纺织品防霉性能测试方法
FZ/T 62015-2009 抗菌毛巾
FZ/T 62012-2009 防螨床上用品
FZ/T 52035-2014 抗菌涤纶短纤维
FZ/T 54034-2010 抗菌聚酰胺预取向丝
FZ/T 54035-2010 抗菌聚酰胺弹力丝
LY/T 1926-2010 抗菌木(竹)质地板 抗菌性能检验方法与抗菌效果
LY/T 2230-2013 人造板防霉性能评价
YY/T 1477.1-2016 接触性创面敷料性能评价用标准试验模型 第1部分:评价抗菌活性的体外创面模型
CAS 157-2007 家用杀菌电冰箱
CAS 115-2005 保健功能纺织品
CH/T 8002-1991 测绘仪器防霉、防雾、防锈
JB/T 5750-2014 气象仪器防盐雾、防潮湿、防霉菌 工艺技术要求
SC 123-1984 渔船电子设备防盐雾、防霉、防湿热的技术要求
DA/T 26-2000 挥发性档案防霉剂防霉效果测定法
其他标准 (6项)
DB31/T 363-2006 防蛀、防霉类日用化学品卫生安全要求
DB 35/T 1058-2010 抗菌涤纶长丝
DB 35/T 1048-2010 抗菌鞋用针织间隔织物
DB 35/T 977-2010 抑菌型纸尿裤(含纸尿片/垫)
DB 44/T 1291-2014 木塑防霉性能测试方法
DB44/T 1703-2015 耐久性抗菌聚酰胺纤维
㈤ 增稠剂的增稠剂种类
按增稠剂相对分子质量分类,有低分子增稠剂和高分子增稠剂:其中,低分子增稠剂和高分子增稠剂还可进一步按其分子中所含功能基团分类,主要有无机增稠剂、纤维素类、脂肪醇、脂肪酸类、醚类、聚丙烯酸酯和缔合型聚氨酯增稠剂类等。
1、低分子增稠剂:
用无机盐(如氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等)做增稠剂的体系,一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。
2、高分子增稠剂:
一类吸水膨胀而形成触变性的凝胶矿物。主要有膨润土、凹凸棒土、硅酸铝等,其中膨润土最为常用。
人们正在研究用无机物和其它物质复合合成增稠剂,如 M Chtourou 等人正在研究用铵盐的有机衍生物和类属蒙脱石的突尼斯黏土合成增稠剂,并且有了很大的进展。
(5)学生校服素琼聚酰胺纤维扩展阅读
用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。
但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%~2%,而且和他类型的增稠剂共同作用,使体系更加稳定。
纤维素类增稠剂的增稠机理是: 纤维素增稠剂分子的疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。
也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高黏性; 而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。
天然胶增稠剂增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。
㈥ 多糖分解后的产物
多糖是由很多个单糖分子缩合而成的高聚物。自然界中的植物、动物及微生物体内都含有多糖。同低聚糖一样,多糖是由单糖通过糖苷键连接起来的,从多糖的形状上看,可分为直链和支链两种,而且多糖链中由于糖苷键的类型不同可有不同的空间结构;如直链多糖的 α(1->4)-葡聚糖和 β(1->3)-葡聚糖具有空心螺旋构象,而 β(1->4)-葡聚糖和 α(1->3)-葡聚糖具有锯齿形带状构象。由一种单糖构成的多糖叫纯多糖,由二种以上单糖构成的多糖叫杂多糖
一、多糖的结构
1.直链多糖
直链淀粉是由 200—300 个 α(1->4)-葡萄糖以糖苷键相连形成的链状缩聚物;其基本结构单位是“麦芽糖基” 。
纤维素是由上千个(平均含有 3000 个)葡萄糖以 β(1->4)-糖苷键相连结形成的链状缩聚物;其基本结构单位是“纤维二糖基”。
2.支链多糖
直链多糖的结构特点一般用二糖结构作为重复单位就可表示出来,支链多糖则可以看成由许多直链多糖相互连接而呈分支状。支链淀粉是一种支链多糖,其相对分子量比直链淀粉的大。有的支链多糖分子量可高达 600 万,其中可有 50 个以上支链,而且每个支链是由 17—30 个数目不等的葡萄糖基构成的。在支链淀粉中,主链和支链都是由 α(1->4)-糖苷键连接起来的;在分支点上,是主链(直链)上的一个葡萄糖基 6 位上的羟基与支链上一个葡萄糖苷羟基形成糖苷键,因此构成分支。在分支点上的葡萄糖基的 1,4,6 三个羟基都参与了糖苷键的形成。
目前位置:首页—>糖类化合物—>N8 多糖
多糖
二、纯多糖和杂多糖
1. 纯多糖
葡聚糖是最重要的纯多糖,常见的淀粉、纤维素、右旋糖酐等都是一些来源不同或糖苷键不同的葡聚糖。自然界中以游离态存在的单糖很少,一般都为多糖形式。在实验室或工业生产中是由各种纯多糖为原料制取相应的单糖的。其它一些纯多糖在自然界中也有相当的分布。]
2.杂多糖
杂多糖可以分成动物粘多糖、植物杂多糖及微生物杂多糖等。
1)动物粘多糖
在动物体内的粘多糖通常是以一定的方式与蛋白相连,而蛋白肽键上的氨基又可与另外的多糖结合,这就构成了在水介质中具有弹性的凝胶状网络;在粘多糖的单糖组分中常含有糖醛酸结构部分。
(1)透明质酸
透明质酸最初发现于眼球内的玻璃体,也存在于解膜中,在动物的结缔组织中也存在透明质酸。有些细菌中因含有透明质酸酶,因面能分解透明质酸而侵害机体。
透明质酸是一个直链的杂多糖,其两端连接在一系列的蛋白肽链上,透明质酸具有 β-葡萄糖醛酸 (1->3)β乙酰氨基葡萄糖(1->4)的结构单元。
(2)粘液素
在粘膜分泌的粘蛋白中,含有粘液素,这是一种粘度很大的粘多糖,其糖链较短而分支较多,存在于机体与外界接角的粘膜部分。粘液素在呼吸道中可捕获空气中的细菌,也可防止消化液中有害物质对胃壁的侵害,对溃疡性胃组织有保护作用。粘液素与透明质酸的结构差别是乙酰氨基葡萄糖是 6-硫酸酯,具有 β-葡萄糖醛酸 (1->3)β-乙酰氨基葡萄糖 6-硫酸酯 1->4 的重复结构单元。
(3)肝素
是一种含有硫酸酯的粘多糖,为动物体内的一种天然抗凝血物质。肝素最早在肝脏中被发现,也存在于肺、肌肉、血管壁、肠粘膜等组织中,但正常血液中几乎不存在肝素。肝素可用作血液体外循环时徨的抗凝血剂也用于防止脉管中血栓形成。
肝素属于不均一的多糖分子,相对分子质量平均 17,000。它的组分是氨基葡萄糖和二种糖醛酸,其中以艾杜糖醛酸为主,其次是葡萄糖醛酸。分子结构可用一个四糖重复单元表示,氨基葡萄糖苷是 α-型的,糖醛酸糖苷是 β-型。肝素的含硫量在 9—12.9% 之间,硫酸基连接在氨基葡萄糖的 2 位氨基和 6 位羟基上,分别形成硫酰胺和硫酸酯。在艾杜糖醛酸的2位羟基成硫酸酯。在生物体内,肝素的硫酸基呈负离子状态。
目前位置:首页—>糖类化合物—>N8 多糖
多糖
2)植物杂多糖
在植物中除纤维素外,还有叫做半纤维素的杂多糖,在半纤维素中含有糖醛酸,所以它溶于碱液并易被酸水解。水解产物主要是五个碳的糖;如木糖、阿拉伯糖以及甘露糖、半乳糖和糖醛酸。小麦的麦秸中,半纤维素部分结构为:
树胶也是一种植物杂多糖,其基本结构特征为:
琼脂是一个海藻多糖,它是由琼脂胶和琼脂糖构成的混合物。琼脂的 1—2% 水溶液冷却后便形成凝胶,是微生物培养基的常用介质,也用作免疫扩散和血清免疫电泳的介质。琼脂糖在生化分析、纯化中用于胶过滤材料;琼脂胶是琼脂糖的硫酸酯,其解离后产生电荷,有相当强的吸附作用,因此不适用作胶过滤材料。琼脂糖的结构重复单元是一个琼脂四糖,但只有两个单糖组分,即 D半乳糖和 3,6-脱水 L-半乳糖,各占50%。
3.微生物杂多糖
在微生物中,有多种杂多糖。如细菌荚膜是具有免疫活性的杂多糖,而在细菌体的细胞壁中,存在胞壁质或磷壁(酸)质等的主要成分也是由杂多糖与多肽组成糖蛋白或由杂多糖与氨基酸形成酯.
目前位置:首页—>糖类化合物—>N8 多糖
多糖
三、常见的重要多糖
1.淀粉
淀粉是植物体内主要的能量储备型态,是人体所需糖类化合物的主要来源,谷物中淀粉的含量最高,一般在 75% 以上。用酸处理淀粉时,淀粉发生水解,先生成糊精等低聚糖,继而再水解成麦芽糖或异多芽糖,最后生成 D-(+)-葡萄糖。
淀粉由直链淀粉和支链淀粉两部分组成。干燥的淀粉呈颗粒状,直链淀粉是线型螺旋形聚合物难溶于水,支链淀粉有较多分支、易于和水分子形成氢键,故信于水,用热水处理淀粉,可得到约 80% 的可溶性支链淀粉,和 20% 不溶性直链淀粉。
直链淀粉在稀酸中水解得到麦芽糖和葡萄糖,支链淀粉在稀酸中水解时还可得到异麦芽糖。异麦芽糖是两个 D-(+)-葡萄糖单位通过 α-(1->6)-糖苷键形成的。
直链淀粉完全甲基化后的水解产物主要是 2,3,6-三-O-甲基葡萄糖,而来源于无还原性端糖基的 2,3,4,6-四-O-甲基葡萄糖还不到 0.5%,支链淀粉的完全甲基化后的水解产物主要是 2,3,6-三-O-甲基葡萄糖,但生成的 2,3,4,6-四-O-甲基葡萄糖量可高达 5%,而且还有 2,3-二-O-甲基葡萄糖生成。这说明支链淀粉的链长比直链的短,在 6 位上有分支点。
直链淀粉中主要是 α(1->4)-糖苷键,这是直链淀粉的一级结构;直链淀粉的链不是直线型,而是盘旋成一个螺旋,每盘旋一周约含有六个葡萄糖单位,此为直链淀粉的二级结构;另外,盘旋的直链淀粉也不是直筒形的,盘旋的长链还可以弯折形成一个表面上不规则的形状,此为直链淀粉的三级结构;如果多条直链淀粉之间通过分子间力或氢键自行结合在一起,形成结构更复杂的复合型直链淀粉,此为四级结构。直链结构的淀粉,其二级结构的中间空穴可以络合碘分子形成蓝色络合物,而支链淀粉与磺作用呈紫红色。
目前位置:首页—>糖类化合物—>N8 多糖
多糖
淀粉是食品、医药、化工、纺织工业的重要原料,而改性淀粉则有更为广阔的应用领域,例如淀粉与丙烯腈的接枝共聚物,用碱液处理后,可得到分子内含有酰氨基和羟基的共聚物,该共聚物有极强的吸水能力(可吸收本身质量 1000 倍以上的水份)和可降解性,在农业、卫生、环境、日常生活中有大量的应用。
2.纤维素
纤维素在自然界中有广泛分布和丰富的储量,木材、亚麻、棉花、禾杆等是纤维素的主要来源。食草动物的消化道中的微生物可产生纤维素酶使纤维素水解,所以食草动物能以富含纤维素的植物为食。纤维素的糖链是平展排列的,相互作用形成纤维素束,这是由于相邻纤维素分子中的羟基互相作用生成氢键而使糖链之间紧密地结合在一起;若干个纤维素束相互绞在一起就形成绳索状结构,这种绳索状结构按一定规律排起来就形成肉眼所见的植物纤维纹理。
纤维素中的糖苷键是 β-(1->4)-型,纤维素无色、无味、不于水及一般的有机溶剂,也不具有还原性(如不能还原试剂)。纤维素较淀粉推于水解,在酸性条件下水解纤维素可得纤维四糖、三糖、二糖等,最后水解产物为 D-(+)-葡萄糖。
果胶是多聚半乳糖醛酸;木质素不属糖类,是一种结构不一的多酚类化合物,它与纤维素结合紧密,起着提高植物的机械强度的作用。
X 衍射和电酉晕⒕笛芯拷峁�砻飨宋�胤肿有纬傻男∈�本段?3nm,分子之间通过氢键联结,具有较强的结晶性质,但不溶于水,也无甜味。纤维素可溶于 Schweitzer 溶液,分子中的羟基与铜离子形成铜氨络合物,这个络合物遇酸后即被分解,使纤维素又沉淀下来。
纤维素作为细胞外壁的支撑和保护物质,可使细胞有足够的韧性和刚性;在生物化学和生物工程研究中是很有价值的载体材料。
纤维素及其衍生物有许多重要的应用。例如人造棉、人造丝就是一种粘胶纤维。将纤维素用氢氯化钠溶液处理生成的钠盐再与CS2作用,生成纤维素黄原酸酯的钠盐,然后把黄酸酯的盐以细丝压入稀硫酸中进行水解、得到粘胶纤维,较短的纤维称作人造棉毛,较长的纤维叫作人造丝。
目前位置:首页—>糖类化合物—>N8 多糖
多糖
纤维素羟基
纤维素中的羟基可进行醚化和酯化反应,生成纤维素醚和纤维素酯。如:甲基纤维素,乙基纤维素,羟甲基纤维素,硝酸纤维素,醋酸纤维素等等,它们分别在纺织、涂料、造纸、皮革(用于分散剂、乳化剂、整理剂、增稠剂、增强剂、胶粘剂、上浆剂、涂膜剂等)胶片、绝缘材料、复合材料(如玻璃纤维、碳纤维、钢纤维、聚丙烯纤维)等方面有重要的应用。
3.甲壳素与壳聚糖
甲壳素(也称甲壳质)是乙酰氨基纯多糖,其名称是 2-乙酰氨基-2-脱氧-β-(1->4)-D-葡聚糖,是 N-乙酰氨基 2-脱氧葡萄糖通过 β(1->4)糖苷键连接形成的直链多糖。
由于在甲壳素分子间存着很强的怪键作用,又有酰胺基团存在,所以甲壳素不溶于一般溶剂,加热时也不熔化,在200度时则开始分解。在酸性深剂中受热溶解时发生降解。甲壳素脱去分子中的乙酰基则转变为壳聚糖,即氨基多糖,其溶解性较大,也称为可溶性甲壳素。甲壳素和壳聚糖的结构与纤维素相似。
甲壳素在节肢动物的外壳中含量非常高,是虾、蟹、昆虫等外壳的重要成分;在自然界中每年由生物体合成的甲壳素有数十亿吨之多,远远超过其它的氨基多糖,是十分丰富的自然资源。
虾、蟹壳中除了含有甲壳素外、还含有碳酸钙和蛋白质等;用稀酸在常温下分解碳酸盐,再用稀碱经加热分解蛋白质,然后经过脱色处理就可得到白色的甲壳素产品。甲壳素在 40—60% 的 NaOH 溶液中受热,在 100—160 度的范围内进行非均相脱乙酰基的反应,可以得到脱乙酰化度在 80% 左右的壳聚糖,在 160 度时,壳聚糖在 50% 的溶液中不分解。通过增加脱乙酰基反应的次数、降低反应温度、缩短反应时间的方法可得到脱乙酰化度高达 90% 以上的高相对分子质量(50—60万)的壳聚糖。
壳聚糖在 6 位上的氧化和2位氨基的磺酸化生成的产物与高效凝血剂肝素在结构上有极大的相似性;为寻求制得廉价的抗凝血剂提供了有效的途径。
与纤维素的反应性能和反应途径相类似,甲壳素和壳聚糖也能进行羟乙基化、羧甲基化及氰乙基化反应生成相应的衍生物,反应主要在 6 位碳的羟基上发生。
壳聚糖通过分子中的氨基和羟基可与一些重金属离子形成稳定的合物,用于吸附分离相应的金属离子,如:Hg2+、Cu2+、Au2+、Ag+等。甲壳素和壳聚糖通过络合及离子效换作用,可对蛋白质、氨基酸、核酸、酚类、卤素以及某些染料等进行吸附;使其应用前景极具潜力。目前甲壳素和壳聚糖在工业上的应用主要是用于重金属离子螯合剂及活性污泥絮凝剂;壳聚糖对活性污泥的絮凝作用很强,并且毒性低,又可生物分解。在纺织、印染工业中,用壳聚糖处理过的棉、毛织物及化纤品,可提高染色性、改善机械性和耐折皱性,提高耐用水性和电绝缘性。用甲壳素的手术缝合线柔软,机械强度高,易被机体吸收;而且可用常规的方法消素养处理并能长期保存使用,很有价值。
近十年来的研究结果表明,甲壳素和壳聚糖在很多方面(如:医药、生物、化工、环境、纺织、食品、保健品、化妆品、洗涤剂等)显示出良好的应用前景。
㈦ 吸附薄层层析与分配,离子交换薄层层分析的区别
吸附层析固定相是固体吸附剂,利用各组分在吸附剂表面吸附能力的差别而分离
分配层析固定相为液体,利用各组分在两液相分配系数的差别或溶解度不同使物质分离
离子交换层析固定相为离子交换剂,利用各组分对离子交换剂的亲和力不同而进行分离
㈧ 柱层析怎么选择洗脱剂
◆吸附层析 吸附剂的吸附力强弱,是由能否有效地接受或供给电子,或提供和接受活泼氢来决定。被吸附物的化学结构如与吸附剂有相似的电子特性,吸附就更牢固。常用吸附剂的吸附力的强弱顺序为:活性炭、氧化铝、硅胶、氧化镁、碳酸钙、磷酸钙、石膏、纤维素、淀粉和糖等。以活性炭的吸附力最强。吸附剂在使用前须先用加热脱水等方法活化。大多数吸附剂遇水即钝化,因此吸附层析大多用于能溶于有机溶剂的有机化合物的分离,较少用于无机化合物。洗脱溶剂的解析能力的强弱顺序是:醋酸、水、甲醇、乙醇、丙酮、乙酸乙酯、醚、氯仿、苯、四氯化碳和己烷等。为了能得到较好的分离效果,常用两种或数种不同强度的溶剂按一定比例混合,得到合适洗脱能力的溶剂系统,以获得最佳分离效果。 ◆分配层析 在支持物上形成部分互溶的两相系统。一般是水相和有机溶剂相。常用支持物是硅胶、纤维素和淀粉等,这些亲水物质能储留相当量的水。被分离物质在两相中都能溶解,但分配比率不同,展层时就会形成以不同速度向前移动的区带。 ◆离子交换层析 支持物是人工交联的带有能解离基团的有机高分子,如离子交换树脂、离子交换纤维素、离子交换凝胶等。带阳离子基团的,如磺酸基(—SO3H)、羧甲基(—CH2COOH)和磷酸基等为阳离子交换剂。带阴离子基团的,如DEAE—(二乙基胺乙基)和QAE—(四级胺乙基)等为阴离子交换剂。离子交换层析只适用于能在水中解离的化合物,包括有机物和无机物。对于蛋白质、核酸、氨基酸及核苷酸的分离分析有极好的分辨力。离子交换基团在水溶液中解离后,能吸引水中被分离物的离子,各种物质在离子交换剂上的离子浓度与周围溶液的离子浓度保持平衡状态,各种离子有不同的交换常数,K值愈高,被吸附愈牢。洗脱时,增加溶液的离子强度,如改变pH,增加盐浓度,离子被取代而解吸下来。洗脱过程中,按K值不同,分成不同的区带。 ◆凝胶过滤层析 支持物是人工合成的交联高聚物,在水中膨胀后成为凝胶。凝胶内为内水层,凝胶周围的水为外水层。控制交联度以形成不同孔径的网状结构。交联度小的孔径大,交联度大的孔径小。凝胶只允许被分离物质中小于孔径的分子进入,大于孔径的分子被排斥在外水层,最先被洗脱下来。而进入孔径的分子也按分子量大小大致分离成不同的区带。选择不同规格的凝胶,可把一个混合物按分子量的差异分成不同的组分。这种方法曾被称为分子筛。目前常用的凝胶商品有:葡聚糖凝胶(sephadex)、聚丙烯酰胺凝胶(bio-gel)、琼脂糖凝胶(sepharose)和聚苯乙烯凝胶(styragel)等。 ◆亲和层析 在一对有专一的相互作用的物质中,把其中之一联结在支持物上,用于纯化相对的另一物质。常见的亲和对如:酶和抑制剂,抗原和抗体,激素和受体等。支持物为琼脂糖或纤维素等。 ◆气相层析 属于分配层析或吸附层析,仅适用于分析分离挥发性和低挥发性物质。固定相是在惰性支持物(如磨细的耐火砖)上覆盖一层高沸点液体,如硅油、高沸点石蜡和油脂、环氧类聚合物。外涂层约为支持物重量的20%。分析时操作温度范围,一般从室温到200℃。特殊的层析柱能达到500℃。流动相常用氦、氩或氮为展层气体。气相层析分离的区带十分清晰,是由于挥发性物质在两相间能很快达到平衡,所需分析时间大为缩短,一般为数分钟至10余分钟。检测记录系统绘出的各峰是测定流出气体电阻变化的结果,因而测定样品量可到微克和毫微克水平。具有快速、灵敏和微量的优点。气相层析也能用于分离制备样品,但需增加将流出气体通过冷冻将分离物回收的装置。 ◆纸层析 以滤纸为支持物的分配层析。组成滤纸的纤维素是亲水物质,能形成水相和展层溶剂的两相系统,被分离物质在两相中的分配保持平衡关系。纸层析用于分析简单的混合物时可做单向层析。对于复杂的混合物,可做双向层析。1944年A.J.P.马丁第一次用纸层析分析氨基酸,得到很好的分离效果,开创了近代层析的发展和应用的新局面。70年代以后,纸层析已逐渐为其他分辨力更高、速度更快和更微量化的新方法,如离子交换层析、薄层层析、高效液相层析等所代替。 ◆薄层层析 在玻璃片、金属箔或塑料片上铺上一层约1~2毫米的支持物,如纤维素、硅胶、离子交换剂、氧化铝或聚酰胺等,根据需要做不同类型的层析。聚酰胺薄膜是一种特异的薄层,将尼龙溶解于浓甲酸中,涂在涤纶片基上,当甲酸挥发后,在涤纶片基上形成一层多孔的薄膜,其分辨力超过了用尼龙粉铺成的薄层。薄层层析较纸层析优越在于分辨高,展层时间短。例如用纸层析做氨基酸分析,往往需要两天时间,而且对层析条件要求严格,不易得到满意的分离效果。如用薄层层析做,一般约需半小时,分离效果更好。薄层层析一般用于定性分析。也能用于定量分析和制备样品。 ◆高效液相层析(又名高压液相色谱) 70年代新发展的层析法。其特点是:用高压输液泵,压强最高可达5000psi(相当于34个标准大气压)。用直径约3~10微米的超细支持物装填均匀的不锈钢柱。常用的支持物是在玻璃小珠上涂一层1~2微米的二氧化硅,经硫酰氯反应生成Si—Cl,进一步连接疏水的烷基,如Si—C18H37,或阳离子交换基团—Si(CH2)n—C6H4SO3H,或阴离子交换基团—Si(CH2)nNH2。这种支持物能承受很高的压力,化学性能稳定。用不同类型支持物的HPLC,可做吸附层析、离子交换层析和凝胶过滤层析。其分析微量化可达10-10克水平。但用于制备,可以纯化上克的样品。展层时间短,一般需几分钟到10余分钟。其分析速度、精确度可与气相层析媲美。HPLC适于分析分离不挥发和极性物质。而气相层析只适用于挥发性物质,两者互为补充,都是目前最为理想的层析法。HPLC配有程序控制洗脱溶剂的梯度混合仪,数据处理的积分仪和记录仪等电子系统,成为一种先进的分析仪器,在生物化学、化学、医药学和环境科学的研究中发挥了重要作用。 ◆反相层析 在吸附层析中,高极性物质在层析柱上吸附较牢,洗脱时发生拖尾现象和保留时间长的问题。如果在支持物上涂上一层高碳原子的疏水性强的烷烃类,洗脱液用极性强的溶剂,如甲醇和水的混合物。则被分离样品中的极性强的物质不被吸附,最先洗下来,得到较好的分离效果。这种层析法与普通的吸附层析法相反,故称为反相层析。目前用HPLC做反相层析常用的ODS柱,即在支持物的表面上连接了C18H37Si—基团。 ◆同系层析 在核酸分析中,将样品经核酸酶部分裂解成不同长度的核苷酸片段,用同位素标记后,在DEAE纤维素薄层上分离,用含有未标记的相同的核苷酸片段作展层溶剂,这样,未标记的核苷酸把标记过的核苷酸推进,使按分子量大小不同把标记核苷酸片段,按由小到大的次序排列,达到分离的目的。于是把这种层析法称为同系层析。同系层析和电泳相结合曾用于寡核苷酸的顺序分析。
㈨ 什么是高分子
高分子化合物简称高分子,又叫大分子,一般指相对分子质量高达几千到几百万的化合物,绝大多数高分子化合物是许多相对分子质量不同的同系物的混合物,因此高分子化合物的相对分子质量是平均相对分子量。高分子化合物是由千百个原子以共价键相互连接而成的,虽然它们的相对分子质量很大,但都是以简单的结构单元和重复的方式连接的。
(9)学生校服素琼聚酰胺纤维扩展阅读
高分子的分类
一、天然高分子(natural polymers)
指以由重复单元连接成的线型长链为基本结构的高分子量化合物,是存在于动物、植物及生物体内的高分子物质。天然高分子化合物可以分为:多肽、蛋白质、酶等;多聚磷酸酯、核糖核酸、脱氧核糖核酸等;多糖如淀粉、肝糖、菊粉、纤维素、甲壳素等;橡胶类如巴西橡胶、杜仲胶等;树脂类如阿拉伯树脂、琼脂、褐藻胶等。
二、合成高分子
分子由一千个以上原子通过共价键结合形成,分子量可达几万至几百万,这类分子称为高分子,或称高分子化合物。存在于自然界中的高分子化合物称为天然高分子,如淀粉、纤维素、棉、麻、丝、毛都是天然高分子,人体中的蛋白质、糖类、核酸等也是天然高分子。用化学方法合成的高分子称为合成高分子,如聚乙烯、聚氯乙烯、聚丙烯腈、聚酰胺(尼龙)等都是常用的合成高分子材料。
参考资料来源:网络-高分子