『壹』 有關帽子的超難推理題!!!!!
問題如下:有100個犯人,頭天晚上被通知第二天一早要帶著一頂帽子(總共有100頂黑的和100頂白的,帽子是隨機帶的,而且不知道自己頭上的帽子是什 么顏色),排成一列直線隊伍,後面的人能看到前面的所有人帶的帽子的顏色,前面的看不到後面的人的帽子顏色,現在警官讓犯人們先討論下,等明天排隊時,警 官從最後一個人問起直到第一個,「你頭上帶的帽子顏色是黑還是白?」犯人只許說一個字「黑或白」,(說話時沒有任何提示,都是標準的一個音,而且沒有眼神 什麼提示,有的只是頭天晚上想出的方法)犯人說錯直接殺,說對了馬上放了,問討論出一個怎樣的方法使被殺的人數確定最少?
感覺最接近正確的答案:
犯人們先商量好,等排好隊後,每個人都先記下在自己前面人的黑帽子的個數和白帽子的個數.
排在最後面的人的答案是關鍵的,他掌控著所有人的生死大權哦,這樣,他前面所有的人都要記下他的答案,而且要記下他後面每一個人的答案.
比如說:
倒數第一個人,他前面99個人中白色帽子是奇數個數,那他就說自己的帽子白色,這是事先協商好的.
倒數第二個人,他就知道白是奇數,這時如果他前面看到的98個人中白色是偶數的話,那他自己一定就是白色的了,他就要說是白.
倒數第三個人,如果他前面97個人中白色偶數的話,而他後面的人是白色,所以他可以馬上知道自己也是黑色了.
倒數第N個人,以此類推啦....
運氣好的話,一個都不用死哦
奇偶校驗法
『貳』 邏輯推理:有5頂帽子,2頂紅的,3頂黑的。拿其中3頂給3個人戴上(不讓他們看到自己戴的帽子顏色),
假設甲乙丙三個人,如果是甲猜出的情況,分析如下:
情況1、甲乙都看到丙戴紅帽子,如果乙是紅帽子,甲就會很快猜出自己是黑帽子。
『叄』 三個人戴五帽 的邏輯推理
三個人,站成一排.有五個帽子,三個藍色,兩個紅色,每人帶一個,各自不準看自己的顏色.第一個人站在排的最後,他可以看見前二個人的帽子的顏色,第二個人可以看見前一個人的帽子的顏色.然後問第一個人帶的什麼顏色的帽子,他說不知道,然後又問第二個人帶的什麼顏色的帽子,同樣說不知道,又問第三個人帶的是什麼顏色的帽子,他說我知道.問第三個人帶的是什麼色帽子?
是這個題嗎?
第一個人縱觀全局,然而他不知道自己的帽子顏色,所以第一個人看到的帽子不會是兩個紅色的,只會是一紅一藍或者兩藍;然後是第二個人,他已經知道第一個人說的話,然而依舊猜不出自己的帽子。如果第三個人是紅帽子的話,第二個人就能說自己是藍帽子,因為不能同時存在兩頂紅帽子,所以第三個人是藍帽子。第三個人聽了這兩個人的話,做了以上思考,得出自己是藍帽子。
『肆』 邏輯推理,關於戴帽子的
紅帽子.因為最後他們人之中一定有人戴紅帽子.而最後一個人又不知道自己戴的什麼帽子,這表示在他的前面一定有人戴紅帽子,倒數第二個人他通過第一個人的話知道前面一定有人戴紅帽子.而他又看道有人戴紅帽子,因此也不知道自己年戴什麼帽子.依次類推,到了第二個人他也看到前面有戴紅帽子的,因此也不知道自己戴的什麼帽子.而第一個人通過他們的話也就推出自己戴的是紅帽子.
『伍』 邏輯推理題,帽子問題
A是色盲,其所戴帽子為綠色。分析如下:
(1)B和C是等同的,由於不可能存在兩個色盲,故A為色盲;
(2)由於第2次詢問時,B和C都知道了,故所取出的帽子為兩紅一綠;
(3)假設A所戴帽子為紅色,則第1次詢問時,B或C應該有1人知道,這與實際情況「第1次詢問時,A、B和C都不知道」矛盾,故A所戴帽子為綠色。
『陸』 帽子顏色(邏輯推理題)
如果自己戴的也是紅色帽子,一共就兩頂紅色帽子,第三個人就能猜到自己就是黑色帽子了,但是那個人沒有反應說明沒有猜出來,說明自己不是紅色帽子,那麼就是黑色帽子了!
『柒』 一道經典的推理題 - 黑白帽子問題
【解析】
1、第一次時,若有人沒看到黑帽子,就知道是自己了,就會自打耳光;但是沒有人打自己耳光,說明每個人都看到黑帽子了。因此,可以推斷至少有兩頂黑帽子。
2、第二次時,若有人看到只有一個黑帽子,就知道是他和自己兩個人戴了黑帽子,就會自打耳光;但是沒有人打自己耳光,說明每個人都看到兩頂黑帽子了。因此,可以推斷至少有三頂黑帽子。
3、第三次時,自然是三個人都只看到了兩頂,因此判斷自己頭上戴的必定是黑帽子。因此,到了關燈時就自打耳光了。
其實以次類推,到了第幾次動手,就可以知道有幾個戴了黑帽子。
『捌』 邏輯推理——猜帽問題
答案紅帽!
推理:A回答不知道,表示A看到的帽子肯定不是兩頂白帽,也就表示B和C當中至少有一人帶的是紅帽。
B想一想才回答不知道,表示B看到C的頭上帶的肯定不是白帽,因為「B和C至少有一人帶的是白帽」那也就表示,要是C帶紅帽的話,那麼B就可定是紅帽了。
所以C是根據這一點才判斷出自己頭上帶的是紅帽!
『玖』 關於帽子的邏輯思維題
因為外鄉人只說,三個人當中,至少有一個戴黃帽子
既然是至少,那麼,就可以看成是三種情況
1,只有一個人戴黃帽子(這個是正確的,自殺的是黃帽子)
2,有兩個人戴黃帽子
3,三個人都是黃帽子
好,先假設有三個人A、B、C
(一)先說情況3,三個人都是黃帽子
所以A、B、C三人眼中都是另外兩個人是黃帽子,所以自己的帽子有可能是黃或者黑,無法判斷,所以這種情況不合理。可以排除。
(二)再說情況2,有兩個人戴黃帽子(假設A、B是黃帽子,C是黑帽子)
那麼A、B眼中:一黃,一黑
C眼中:兩個黃
所以A、B看到一黃一黑,所以無法確定自己的帽子顏色
而在C眼中,雖然看到的是兩個黃色的,但是自己也有可能是黑或者黃,所以也無法確認,所以這種情況不合理。可以排除
(三)再說情況1,只有一個人戴黃帽子(這個是這確滴)
假設 A:黃帽子 B、C:黑帽子
那麼A眼中:B、C黑帽子
B、C眼中:一黑一黃
所以 A由於看到B、C都是黑帽子,而三個人當中至少一個是黃帽子,所以得出自己的帽子是黃顏色。所以第二天自殺的人是帶黃帽子的A
第三天,B、C知道黃帽子的A自殺
B、C可以推出A自殺的理由是B和C都是黑帽子 所以B、C兩人看到對方是黑色帽子推出自己是黑帽子,遂自殺。
所以答案是 自殺的是黃帽子 另外兩個人是黑帽子